CTFshow-Crypto(17-25)

17EZ_avbv(easy)

18贝斯多少呢

base62穷举分段

给了段编码,hint为base62

8nCDq36gzGn8hf4M2HJUsn4aYcYRBSJwj4aE0hbgpzHb4aHcH1zzC9C3IL

随波逐流和Cyberchef都没梭哈出来

看了师傅们的wp大概意思是:

分组长度固定,但是不一定是被整除为整数,只要找到从头开始截取一个长度解出明文,就是分组的长度了

其实就是穷举,分组长度应该是固定的,但是不一定没有冗余,穷举到可以解码出flag明文片段,后续继续按照该分组长度切割即可

最终分为

8nCDq36gzGn flag{6a5
8hf4M2HJUsn eb2_i5_u
4aYcYRBSJwj 5ua11y_u
4aE0hbgpzHb 5ed_f0r_
4aHcH1zzC9C 5h0rt_ur
3IL         1}
flag{6a5eb2_i5_u5ua11y_u5ed_f0r_5h0rt_ur1}
在线网站解码

19find the table

题目说明审查元素

检查-->元素或者对题目中的“审查元素”右键检查

9 57 64 8 39 8 92 3 19 99 102 74

确实有有一些数字

对应元素周期表

元素周期表

9 57 64 8 39 8 92 3 19 99 102 74
对应的元素就是
f la gd o y o u li k es no w

flag{doyoulikesnow}

审查元素有什么作用?

浏览器的审查元素,这是一个神奇的玩意儿_vue开发浏览器检查元素有什么作用-CSDN博客

20babyrsa

最基础的RSA

开始RSA

打开附件,给了e,p,q,c,是最基础的RSA

RSA算法

密码公主写的很详细:

RSA入门(一) - Kicky_Mu - 博客园 (cnblogs.com)

脚本
from Crypto.Util.number import *
import gmpy2
e = 65537
p = 104046835712664064779194734974271185635538927889880611929931939711001301561682270177931622974642789920918902563361293345434055764293612446888383912807143394009019803471816448923969637980671221111117965227402429634935481868701166522350570364727873283332371986860194245739423508566783663380619142431820861051179
q = 140171048074107988605773731671018901813928130582422889797732071529733091703843710859282267763783461738242958098610949120354497987945911021170842457552182880133642711307227072133812253341129830416158450499258216967879857581565380890788395068130033931180395926482431150295880926480086317733457392573931410220501
c = 4772758911204771028049020670778336799568778930072841084057809867608022732611295305096052430641881550781141776498904005589873830973301898523644744951545345404578466176725030290421649344936952480254902939417215148205735730754808467351639943474816280980230447097444682489223054499524197909719857300597157406075069204315022703894466226179507627070835428226086509767746759353822302809385047763292891543697277097068406512924796409393289982738071019047393972959228919115821862868057003145401072581115989680686073663259771587445250687060240991265143919857962047718344017741878925867800431556311785625469001771370852474292194
n = p*q
phi = (p-1)*(q-1)
d = gmpy2.invert(e,phi)
m = pow(c,d,n)
print(long_to_bytes(m))
工具(风二西)

21easyrsa1

分解n

分解n=1455925529734358105461406532259911790807347616464991065301847

在线网站或者工具都可以

p=1201147059438530786835365194567

q=1212112637077862917192191913841

脚本
from Crypto.Util.number import *
import gmpy2
e = 65537
p = 1201147059438530786835365194567
q = 1212112637077862917192191913841
c = 69380371057914246192606760686152233225659503366319332065009
n = 1455925529734358105461406532259911790807347616464991065301847
phi = (p-1)*(q-1)
d = gmpy2.invert(e,phi) #求e关于phi_n1的逆元
m = pow(c,d,n) #m=(c1^d)modn1
print(long_to_bytes(m))
工具

跟上一题一样

22easyrsa2

共享素数/模不互素

e = 65537
n1 = 23686563925537577753047229040754282953352221724154495390687358877775380147605152455537988563490716943872517593212858326146811511103311865753018329109314623702207073882884251372553225986112006827111351501044972239272200616871716325265416115038890805114829315111950319183189591283821793237999044427887934536835813526748759612963103377803089900662509399569819785571492828112437312659229879806168758843603248823629821851053775458651933952183988482163950039248487270453888288427540305542824179951734412044985364866532124803746008139763081886781361488304666575456680411806505094963425401175510416864929601220556158569443747
c1 = 1627484142237897613944607828268981193911417408064824540711945192035649088104133038147400224070588410335190662682231189997580084680424209495303078061205122848904648319219646588720994019249279863462981015329483724747823991513714172478886306703290044871781158393304147301058706003793357846922086994952763485999282741595204008663847963539422096343391464527068599046946279309037212859931303335507455146001390326550668531665493245293839009832468668390820282664984066399051403227990068032226382222173478078505888238749583237980643698405005689247922901342204142833875409505180847943212126302482358445768662608278731750064815

e = 65537
n2 = 22257605320525584078180889073523223973924192984353847137164605186956629675938929585386392327672065524338176402496414014083816446508860530887742583338880317478862512306633061601510404960095143941320847160562050524072860211772522478494742213643890027443992183362678970426046765630946644339093149139143388752794932806956589884503569175226850419271095336798456238899009883100793515744579945854481430194879360765346236418019384644095257242811629393164402498261066077339304875212250897918420427814000142751282805980632089867108525335488018940091698609890995252413007073725850396076272027183422297684667565712022199054289711
c2 = 2742600695441836559469553702831098375948641915409106976157840377978123912007398753623461112659796209918866985480471911393362797753624479537646802510420415039461832118018849030580675249817576926858363541683135777239322002741820145944286109172066259843766755795255913189902403644721138554935991439893850589677849639263080528599197595705927535430942463184891689410078059090474682694886420022230657661157993875931600932763824618773420077273617106297660195179922018875399174346863404710420166497017196424586116535915712965147141775026549870636328195690774259990189286665844641289108474834973710730426105047318959307995062

给了一个e,和多组的n,c。这些n,c还都是一个明文m

通过对不同的n进行gcd()算法,求出最大公约数(即p)

求出p了,就能求出q,进而求出d, 解出明文m

脚本
from Crypto.Util.number import *
import gmpy2
e = 65537
n1 = 23686563925537577753047229040754282953352221724154495390687358877775380147605152455537988563490716943872517593212858326146811511103311865753018329109314623702207073882884251372553225986112006827111351501044972239272200616871716325265416115038890805114829315111950319183189591283821793237999044427887934536835813526748759612963103377803089900662509399569819785571492828112437312659229879806168758843603248823629821851053775458651933952183988482163950039248487270453888288427540305542824179951734412044985364866532124803746008139763081886781361488304666575456680411806505094963425401175510416864929601220556158569443747
c1 = 1627484142237897613944607828268981193911417408064824540711945192035649088104133038147400224070588410335190662682231189997580084680424209495303078061205122848904648319219646588720994019249279863462981015329483724747823991513714172478886306703290044871781158393304147301058706003793357846922086994952763485999282741595204008663847963539422096343391464527068599046946279309037212859931303335507455146001390326550668531665493245293839009832468668390820282664984066399051403227990068032226382222173478078505888238749583237980643698405005689247922901342204142833875409505180847943212126302482358445768662608278731750064815
n2 = 22257605320525584078180889073523223973924192984353847137164605186956629675938929585386392327672065524338176402496414014083816446508860530887742583338880317478862512306633061601510404960095143941320847160562050524072860211772522478494742213643890027443992183362678970426046765630946644339093149139143388752794932806956589884503569175226850419271095336798456238899009883100793515744579945854481430194879360765346236418019384644095257242811629393164402498261066077339304875212250897918420427814000142751282805980632089867108525335488018940091698609890995252413007073725850396076272027183422297684667565712022199054289711
c2 = 2742600695441836559469553702831098375948641915409106976157840377978123912007398753623461112659796209918866985480471911393362797753624479537646802510420415039461832118018849030580675249817576926858363541683135777239322002741820145944286109172066259843766755795255913189902403644721138554935991439893850589677849639263080528599197595705927535430942463184891689410078059090474682694886420022230657661157993875931600932763824618773420077273617106297660195179922018875399174346863404710420166497017196424586116535915712965147141775026549870636328195690774259990189286665844641289108474834973710730426105047318959307995062
p = gmpy2.gcd(n1,n2)
q1 = n1//p #用n1 n2都可以,这里用n1,下面就用c1
phi_n1 = (p-1)*(q1-1)
d = gmpy2.invert(e,phi_n1) #求e关于phi_n1的逆元
m = pow(c1,d,n1) #m=(c1^d)modn1
print(long_to_bytes(m))
工具(风二西)

使用模不互素模式

23easyrsa3

共模攻击

e = 797
n = 15944475431088053285580229796309956066521520107276817969079550919586650535459242543036143360865780730044733026945488511390818947440767542658956272380389388112372084760689777141392370253850735307578445988289714647332867935525010482197724228457592150184979819463711753058569520651205113690397003146105972408452854948512223702957303406577348717348753106868356995616116867724764276234391678899662774272419841876652126127684683752880568407605083606688884120054963974930757275913447908185712204577194274834368323239143008887554264746068337709465319106886618643849961551092377843184067217615903229068010117272834602469293571
c = 11157593264920825445770016357141996124368529899750745256684450189070288181107423044846165593218013465053839661401595417236657920874113839974471883493099846397002721270590059414981101686668721548330630468951353910564696445509556956955232059386625725883038103399028010566732074011325543650672982884236951904410141077728929261477083689095161596979213961494716637502980358298944316636829309169794324394742285175377601826473276006795072518510850734941703194417926566446980262512429590253643561098275852970461913026108090608491507300365391639081555316166526932233787566053827355349022396563769697278239577184503627244170930

e = 521
n = 15944475431088053285580229796309956066521520107276817969079550919586650535459242543036143360865780730044733026945488511390818947440767542658956272380389388112372084760689777141392370253850735307578445988289714647332867935525010482197724228457592150184979819463711753058569520651205113690397003146105972408452854948512223702957303406577348717348753106868356995616116867724764276234391678899662774272419841876652126127684683752880568407605083606688884120054963974930757275913447908185712204577194274834368323239143008887554264746068337709465319106886618643849961551092377843184067217615903229068010117272834602469293571
c = 6699274351853330023117840396450375948797682409595670560999898826038378040157859939888021861338431350172193961054314487476965030228381372659733197551597730394275360811462401853988404006922710039053586471244376282019487691307865741621991977539073601368892834227191286663809236586729196876277005838495318639365575638989137572792843310915220039476722684554553337116930323671829220528562573169295901496437858327730504992799753724465760161805820723578087668737581704682158991028502143744445435775458296907671407184921683317371216729214056381292474141668027801600327187443375858394577015394108813273774641427184411887546849

n相同,但e,c不同 考察 共模攻击

上述两个密钥加密的密文c1,c2是由(n1,e1),(n2,e2)加密得到的,这个时候我们不需要计算d,可以直接解出密文m

根据RSA加密原理 我们可知:

c1 = m^e1 % n
c2 = m^e2 % n
若两个密钥e互素 根据扩展欧几里得算法,存在 s1、s2使得:

e1 * s1 + e2 * s2 = 1

因此,存在s1、s2 满足:

c1^s1 * c2^s2 mod n

≡ (me1)s1 * (me2)s2 mod n

≡ m^(e1+s1+e2+s2) mod n

≡ m mod n

因此便可不需要d 利用 c1 c2 e1 e2求解明文m 这就是共模攻击的原理

扩展欧几里得算法

扩展欧几里得算法详解-CSDN博客

扩展欧几里得模块gmpy2.gcdext(e1,e2)

扩展欧几里得:gmpy2.gcdext(e1,e2)#求式子e1x+e2y=gcd(e1,e2)。在RSA加密算法中利用该公式来求e的逆元d,由于实际上公钥e的选取需要保证gcd(e,ψ(n))=1,所以在这种情况下式子的右边就是1,且通常用下面这个公式来求逆元。

返回值为gcd(e1,e2),x, y

脚本
from Crypto.Util.number import *
import gmpy2
e1 = 797
c1 = 11157593264920825445770016357141996124368529899750745256684450189070288181107423044846165593218013465053839661401595417236657920874113839974471883493099846397002721270590059414981101686668721548330630468951353910564696445509556956955232059386625725883038103399028010566732074011325543650672982884236951904410141077728929261477083689095161596979213961494716637502980358298944316636829309169794324394742285175377601826473276006795072518510850734941703194417926566446980262512429590253643561098275852970461913026108090608491507300365391639081555316166526932233787566053827355349022396563769697278239577184503627244170930
e2 = 521
c2 = 6699274351853330023117840396450375948797682409595670560999898826038378040157859939888021861338431350172193961054314487476965030228381372659733197551597730394275360811462401853988404006922710039053586471244376282019487691307865741621991977539073601368892834227191286663809236586729196876277005838495318639365575638989137572792843310915220039476722684554553337116930323671829220528562573169295901496437858327730504992799753724465760161805820723578087668737581704682158991028502143744445435775458296907671407184921683317371216729214056381292474141668027801600327187443375858394577015394108813273774641427184411887546849
n = 15944475431088053285580229796309956066521520107276817969079550919586650535459242543036143360865780730044733026945488511390818947440767542658956272380389388112372084760689777141392370253850735307578445988289714647332867935525010482197724228457592150184979819463711753058569520651205113690397003146105972408452854948512223702957303406577348717348753106868356995616116867724764276234391678899662774272419841876652126127684683752880568407605083606688884120054963974930757275913447908185712204577194274834368323239143008887554264746068337709465319106886618643849961551092377843184067217615903229068010117272834602469293571
s= gmpy2.gcdext(e1,e2)
s1=s[1]
s2=s[2]
m = pow(c1,s1,n)*pow(c2,s2,n) %n
print(long_to_bytes(m))
工具(风二西)

选择共模攻击模式

24easyrsa4

小明文攻击(低加密指数攻击)

e = 3
n = 18970053728616609366458286067731288749022264959158403758357985915393383117963693827568809925770679353765624810804904382278845526498981422346319417938434861558291366738542079165169736232558687821709937346503480756281489775859439254614472425017554051177725143068122185961552670646275229009531528678548251873421076691650827507829859299300272683223959267661288601619845954466365134077547699819734465321345758416957265682175864227273506250707311775797983409090702086309946790711995796789417222274776215167450093735639202974148778183667502150202265175471213833685988445568819612085268917780718945472573765365588163945754761
c = 150409620528139732054476072280993764527079006992643377862720337847060335153837950368208902491767027770946661

当e=3时,如果明文过小,导致明文的三次方仍然小于n,那么直接对密文三次开方,就可以得到明文

gmpy2.iroot(x,n)

对x开n次方根

脚本
from Crypto.Util.number import *
import gmpy2
e = 3
n = 18970053728616609366458286067731288749022264959158403758357985915393383117963693827568809925770679353765624810804904382278845526498981422346319417938434861558291366738542079165169736232558687821709937346503480756281489775859439254614472425017554051177725143068122185961552670646275229009531528678548251873421076691650827507829859299300272683223959267661288601619845954466365134077547699819734465321345758416957265682175864227273506250707311775797983409090702086309946790711995796789417222274776215167450093735639202974148778183667502150202265175471213833685988445568819612085268917780718945472573765365588163945754761
c = 150409620528139732054476072280993764527079006992643377862720337847060335153837950368208902491767027770946661
m = gmpy2.iroot (c,e)[0]
print(long_to_bytes(m))
工具(风二西)

选小e攻击模式

25easyrsa5

维纳攻击(低解密指数攻击)

e = 284100478693161642327695712452505468891794410301906465434604643365855064101922252698327584524956955373553355814138784402605517536436009073372339264422522610010012877243630454889127160056358637599704871937659443985644871453345576728414422489075791739731547285138648307770775155312545928721094602949588237119345
n = 468459887279781789188886188573017406548524570309663876064881031936564733341508945283407498306248145591559137207097347130203582813352382018491852922849186827279111555223982032271701972642438224730082216672110316142528108239708171781850491578433309964093293907697072741538649347894863899103340030347858867705231
c = 350429162418561525458539070186062788413426454598897326594935655762503536409897624028778814302849485850451243934994919418665502401195173255808119461832488053305530748068788500746791135053620550583421369214031040191188956888321397450005528879987036183922578645840167009612661903399312419253694928377398939392827

有关wiener 攻击的解题脚本

pablocelayes/rsa-wiener-attack: A Python implementation of the Wiener attack on RSA public-key encryption scheme. (github.com)

利用python编写一下代码

from Crypto.Util.number import *
from gmpy2 import *
from RSAwienerHacker import *

n= 468459887279781789188886188573017406548524570309663876064881031936564733341508945283407498306248145591559137207097347130203582813352382018491852922849186827279111555223982032271701972642438224730082216672110316142528108239708171781850491578433309964093293907697072741538649347894863899103340030347858867705231
e= 284100478693161642327695712452505468891794410301906465434604643365855064101922252698327584524956955373553355814138784402605517536436009073372339264422522610010012877243630454889127160056358637599704871937659443985644871453345576728414422489075791739731547285138648307770775155312545928721094602949588237119345
c= 350429162418561525458539070186062788413426454598897326594935655762503536409897624028778814302849485850451243934994919418665502401195173255808119461832488053305530748068788500746791135053620550583421369214031040191188956888321397450005528879987036183922578645840167009612661903399312419253694928377398939392827

d=hack_RSA(e,n)
m=pow(c,d,n)
print(long_to_bytes(m))

将代码放到下载脚本的目录(我命名为RSA.py),cmd运行得到flag

工具(风二西)

选择维纳攻击模块

原理

有点似懂非懂的就先不说了,给两篇我觉得写的比较好的先留着,说不定哪天灵光一现就通透了

Wener‘s attack(RSA低解密指数攻击)-CSDN博客

RSA攻击基本原理及代码实现总结 - 个人文章 - SegmentFault 思否

热门相关:我能改变东西颜色   腹黑老公溺宠:老婆不准躲   童养媳之桃李满天下   许你盛世安宁   农家小福女