【C++】【图像处理】均值滤波和高斯滤波(低通滤波)算法解析(以.raw格式的图像为基础进行图像处理、gray levels:256)
1 void meanFilter(BYTE* image, int width, int height, BYTE* outImg) 2 { 3 //均值滤波 4 int smth[9]; 5 int i, j, m, n; 6 BYTE block[9]; 7 8 // 高斯卷积核初始化 9 smth[0] = 1, smth[1] = 2, smth[2] = 1, 10 smth[3] = 2, smth[4] = 4, smth[5] = 2, 11 smth[6] = 1, smth[7] = 2, smth[8] = 1; 12 13 int value; 14 for (i = 0;i < 9;i++) //初始化均值卷积核 15 smth[i] = 1; 16 17 for (i = 0;i < height;i++) 18 for (j = 0;j < width;j++) { 19 //将输出图像边缘的像素值设为 0 20 if (i == 0 || j == 0 || i == height - 1 || j == width - 1) 21 outImg[i * width + j] = 0; 22 23 //提取以当前像素为中心的 3x3 区域的像素值,然后利用卷积操作计算这个区域的均值,最后将计算得到的均值作为输出图像中对应位置的像素值 24 else { 25 for (m = -1;m < 2;m++) 26 for (n = -1;n < 2;n++) 27 block[(m + 1) * 3 + n + 1] = image[(i + m) * width + j + n]; 28 value = convolution(smth, block); 29 outImg[i * width + j] = BYTE(value / 9.0f); // 高斯为 value / 16.0f 30 } 31 } 32 33 } 34 35 36 int convolution(int* operatr, BYTE* block) 37 { 38 int value; 39 int i, j; 40 value = 0; 41 //卷积运算 42 //遍历 3x3 区域内的每个像素,并根据卷积核的权重计算出卷积结果 43 for (i = 0;i < 3;i++) 44 for (j = 0;j < 3;j++) 45 value += operatr[i * 3 + j] * block[i * 3 + j]; 46 /* 47 1 1 1 48 1 1 1 49 1 1 1 50 51 0 0 0 52 0 x y 53 0 j k 54 */ 55 56 return value; 57 58 }
低通滤波和直方图均衡核心点:按照一定的 权重 / 均分比例 处理 一定区域 / 数量上的像素点上的灰度级值。