Pytorch学习笔记-(xiaotudui)
常用的包
import torch
import torchvision
from torch import nn
from torch.utils.data import DataLoader
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.tensorboard import SummaryWriter
Pytorch
pytorch安装
准备环境
- 安装Ancona工具
- 安装python语言
- 安装pycharm工具
以上工作安装完成后,开始真正的pytorch安装之旅,别担心,很容易
1.打开Ancona Prompt创建一个pytorch新环境
conda create -n pytorch python=版本号比如3.11
后面步骤都是y同意安装
2.激活环境
同样在Ancona Prompt中继续输入如下指令
conda activate pytorch
3.去pytorch官网找到下载pytorch指令,根据个人配置进行选择
- window下一般选择Conda
- Linux下一般选择Pip
这里要区分自己电脑是否含有独立显卡,没有的选择cpu模式就行。
如果有独立显卡,那么去NVIDIA官网查看自己适合什么版本型号进行选择即可。
如果有独立显卡,在Ancona Prompt中输入如下指令,返回True即可确认安装成功。
torch.cuda.is_available()
如果没有cpu我们通过pycharm来进行判断,首先创建一个pytorch工程,如下所示:
import torch
print(torch.cuda.is_available())
print(torch.backends.cudnn.is_available())
print(torch.cuda_version)
print(torch.backends.cudnn.version())
print(torch.__version__)
是不是发现输出false, false, None, None,是不是以为错了。不,那是因为我们安装的是CPU版本的,压根就没得cuda,cudnn这个东西。我们只要检测python版本的torch(PyTorch)在就行。
ok!恭喜你成功完成安装pytroch!接下来开启你的学习之路吧!
引言:python中的两大法宝函数
- 这里1、2、3、4是分隔区
# 查看torch里面有什么
for i in range(len(dir(torch))):
print(f"{dir(torch)[i]}")
pytorch加载数据初认识
import import torch
from torch.utils.data import Dataset
- 看看Dataset里面有什么:
Dataset代码实战
from torch.utils.data import Dataset
from PIL import Image
import os
class MyData(Dataset):
def __init__(self, root_dir, label_dir):
self.root_dir = root_dir
self.label_dir = label_dir
self.path = os.path.join(self.root_dir, self.label_dir) # 根路径和最后的路径进行拼接
self.img_path = os.listdir(self.path) # 路径地址img_path[0] 就是第一张地址
def __getitem__(self, idx):
"""
读取每个照片
:param idx:
:return:
"""
img_name = self.img_path[idx]
img_item_path = os.path.join(self.root_dir, self.label_dir, img_name)
img = Image.open(img_item_path)
label = self.label_dir
return img, label
def __len__(self):
"""
查看图片个数,即数据集个数
:return:
"""
return len(self.img_path)
# img_path = "E:\\Project\\Code_Python\\Learn_pytorch\\learn_pytorch\\dataset\\training_set\\cats\\cat.1.jpg"
# img = Image.open(img_path)
# print(img)
# img.show()
root_dir = "dataset/training_set"
cats_label_dir = "cats"
dogs_label_dir = "dogs"
cats_dataset = MyData(root_dir, cats_label_dir)
dogs_dataset = MyData(root_dir, dogs_label_dir)
img1, label1 = cats_dataset[1]
img2, label2 = dogs_dataset[1]
# img1.show()
# img2.show()
train_dataset = cats_dataset + dogs_dataset # 合并数据集
print(len(train_dataset))
print(len(cats_dataset))
print(len(dogs_dataset))
TensorBoard的使用(一)
from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter("logs") # 事件文件存储地址
# writer.add_image()
# y = x
for i in range(100):
writer.add_scalar("y=2x", 2*i, i) # 标量的意思 参数2*i 是x轴 i是y轴
writer.close()
- 安装tensorboard
pip install tensorboard
- 运行tensorboard
tensorboard --logdir="logs" --port=6007(这里是指定端口号,也可以不写--port,默认6006)
-
利用Opencv读取图片,获得numpy型图片数据
-
import numpy as np from torch.utils.tensorboard import SummaryWriter import cv2 writer = SummaryWriter("logs") # 事件文件存储地址 img_array = cv2.imread("./dataset/training_set/cats/cat.2.jpg") # print(img_array.shape) writer.add_image("test",img_array,2,dataformats='HWC') # y = x for i in range(100): writer.add_scalar("y=2x", 2 * i, i) # 标量的意思 writer.close()
Transforms使用
![Snipaste_2023-11-01_10-52-09](./pytorch截图/Snipaste_2023-11-01_10-52-09.png)from torchvision import transforms
from PIL import Image
# python当中的用法
# tensor数据类型
# 通过transforms.ToTensor去解决两个问题
# 1.transforms如何使用(pyhton)
# 2.为什么需要Tensor数据类型:因为里面包装了神经网络模型训练的数据类型
# 绝对路径 E:\Project\Code_Python\Learn_pytorch\learn_pytorch\dataset\training_set\cats\cat.6.jpg
# 相对路径 dataset/training_set/cats/cat.6.jpg
img_path = "dataset/training_set/cats/cat.6.jpg"
img = Image.open(img_path)
# 1.transforms如何使用(pyhton)
tensor_trans = transforms.ToTensor()
tensor_img = tensor_trans(img)
print(tensor_img.shape)
常见的Transforms
from PIL import Image
from torchvision import transforms
from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter("logs")
img = Image.open("dataset/training_set/cats/cat.11.jpg")
print(img)
# ToTensor的使用
trans_totensor = transforms.ToTensor()
img_tensor = trans_totensor(img)
writer.add_image("ToTensor", img_tensor)
# Normalize
print(img_tensor[0][0][0])
trans_norm = transforms.Normalize([1, 1, 1], [1, 1, 1])
img_norm = trans_norm(img_tensor)
print(img_norm[0][0][0])
writer.add_image("Normalize", img_norm, 0)
# Resize
print(img.size)
trans_resize = transforms.Resize((512, 512))
# img PIL -> resize -> img_resize PIL
img_resize = trans_resize(img)
# img_resize PIL -> totensor -> img_resize tensor
img_resize = trans_totensor(img_resize)
# print(img_resize)
writer.add_image("Resize", img_resize, 1)
# Compose - resize - 2
trans_resize_2 = transforms.Resize(144)
# PIL -> PIL -> tensor数据类型
trans_compose = transforms.Compose([trans_resize_2, trans_totensor])
img_resize_2 = trans_compose(img)
writer.add_image("Resize_Compose", img_resize_2, 2)
writer.close()
torchvision中的数据集使用
import torchvision
from torch.utils.tensorboard import SummaryWriter
dataset_transforms = torchvision.transforms.Compose([
torchvision.transforms.ToTensor()
])
# 下载数据集
train_set = torchvision.datasets.CIFAR10(root="./dataset", train=True, transform=dataset_transforms, download=True)
test_set = torchvision.datasets.CIFAR10(root="./dataset", train=False, transform=dataset_transforms, download=True)
print(test_set[0])
print(test_set.classes)
img, target = test_set[0]
print(img)
print(target)
print(test_set.classes[target])
# img.show()
writer = SummaryWriter("p10")
for i in range(10):
img, target = test_set[i]
writer.add_image("test_set", img, i)
writer.close()
DataLoad的使用
import torchvision
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
# 准备的测试数据集
test_data = torchvision.datasets.CIFAR10("./dataset", train=False, transform=torchvision.transforms.ToTensor())
test_loader = DataLoader(dataset=test_data, batch_size=64, shuffle=True, num_workers=0, drop_last=False)
# 这里数据集是之前官网下载下来的
# 测试数据集中第一张图片及target
img, target = test_data[0]
print(img.shape)
print(target)
writer = SummaryWriter("dataloader")
step = 0
for data in test_loader:
imgs, targets = data
# print(imgs.shape)
# print(targets)
writer.add_images("test_data", imgs, step)
step = step + 1
writer.close()
- 最后一次数据不满足64张 于是将参数设置drop_last=True
import torchvision
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
# 准备的测试数据集
test_data = torchvision.datasets.CIFAR10("./dataset", train=False, transform=torchvision.transforms.ToTensor())
test_loader = DataLoader(dataset=test_data, batch_size=64, shuffle=True, num_workers=0, drop_last=True)
# 这里数据集是之前官网下载下来的
# 测试数据集中第一张图片及target
img, target = test_data[0]
print(img.shape)
print(target)
writer = SummaryWriter("dataloader_drop_last")
step = 0
for data in test_loader:
imgs, targets = data
# print(imgs.shape)
# print(targets)
writer.add_images("test_data", imgs, step)
step = step + 1
writer.close()
- shuffle 使用
- True 两边图片选取不一样
- False两边图片选取一样
import torchvision
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
# 准备的测试数据集
test_data = torchvision.datasets.CIFAR10("./dataset", train=False, transform=torchvision.transforms.ToTensor())
test_loader = DataLoader(dataset=test_data, batch_size=64, shuffle=True, num_workers=0, drop_last=True)
# 这里数据集是之前官网下载下来的
# 测试数据集中第一张图片及target
img, target = test_data[0]
print(img.shape)
print(target)
writer = SummaryWriter("dataloader")
for epoch in range(2):
step = 0
for data in test_loader:
imgs, targets = data
# print(imgs.shape)
# print(targets)
writer.add_images("Eopch: {}".format(epoch), imgs, step)
step = step + 1
writer.close()
神经网络的基本骨架
import torch
from torch import nn
class ConvModel(nn.Module):
def __init__(self, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
def forward(self, input):
output = input + 1
return output
convmodel = ConvModel()
x = torch.tensor(1.0)
output = convmodel(x)
print(output)
卷积操作
import torch
import torch.nn.functional as F
# 卷积输入
input = torch.tensor([[1, 2, 0, 3, 1],
[0, 1, 2, 3, 1],
[1, 2, 1, 0, 0],
[5, 2, 3, 1, 1],
[2, 1, 0, 1, 1]])
# 卷积核
kernel = torch.tensor([[1, 2, 1],
[0, 1, 0],
[2, 1, 0]])
# 进行尺寸转换
input = torch.reshape(input, (1, 1, 5, 5))
kernel = torch.reshape(kernel, (1, 1, 3, 3))
print(input.shape)
print(kernel.shape)
output = F.conv2d(input, kernel, stride=1)
print(output)
output2 = F.conv2d(input, kernel, stride=2)
print(output2)
- padding
# padding 默认填充值是0
output3 = F.conv2d(input, kernel, stride=1, padding=1)
print(output3)
结果:
tensor([[[[ 1, 3, 4, 10, 8],
[ 5, 10, 12, 12, 6],
[ 7, 18, 16, 16, 8],
[11, 13, 9, 3, 4],
[14, 13, 9, 7, 4]]]])
神经网络-卷积层
import torch
import torchvision
from torch.utils.data import DataLoader
from torch import nn
from torch.nn import Conv2d
from torch.utils.tensorboard import SummaryWriter
dataset = torchvision.datasets.CIFAR10("./dataset", train=False, transform=torchvision.transforms.ToTensor(),
download=True)
dataloader = DataLoader(dataset, batch_size=64)
class NN_Conv2d(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = Conv2d(in_channels=3, out_channels=6, kernel_size=3, stride=1, padding=0)
def forward(self, x):
x = self.conv1(x)
return x
nn_conv2d = NN_Conv2d()
# print(nn_conv2d)
writer = SummaryWriter("./logs")
step = 0
for data in dataloader:
imgs, targets = data
output = nn_conv2d(imgs)
print(f"imgs: {imgs.shape}")
print(f"output: {output.shape}")
# 输入的大小 torch.Size([64,3,32,32])
writer.add_images("input", imgs, step)
# 卷积后输出的大小 torch.Size([64,,6,30,30) --> [xxx,3,30,30]
output = torch.reshape(output, (-1, 3, 30, 30))
writer.add_images("output", output, step)
step += 1
# import numpy as np
import torch
import torchvision
from torch import nn
from torch.nn import Conv2d
from torch.utils.tensorboard import SummaryWriter
import cv2
from torchvision import transforms
# 创建卷积模型
class NN_Conv2d(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = Conv2d(in_channels=3, out_channels=6, kernel_size=3, stride=1, padding=1)
def forward(self, x):
x = self.conv1(x)
return x
nn_conv2d = NN_Conv2d()
writer = SummaryWriter('logs_test')
input_img = cv2.imread("dataset/ice.jpg")
# 转化为tensor类型
trans_tensor = transforms.ToTensor()
input_img = trans_tensor(input_img)
# 设置input输入大小
input_img = torch.reshape(input_img, (-1, 3, 1312, 2100))
print(input_img.shape)
writer.add_images("input_img", input_img, 1)
# 进行卷积输出
output = nn_conv2d(input_img)
output = torch.reshape(output, (-1, 3, 1312, 2100))
print(output.shape)
writer.add_images('output_test', output, 1)
writer.close()
神经网络-最大池化
import torch
from torch import nn
from torch.nn import MaxPool2d
input_img = torch.tensor([[1, 2, 0, 3, 1],
[0, 1, 2, 3, 1],
[1, 2, 1, 0, 0],
[5, 2, 3, 1, 1],
[2, 1, 0, 1, 1]], dtype=torch.float32)
input_img = torch.reshape(input_img, (-1, 1, 5, 5))
print(input_img.shape)
# 简单的搭建卷积神经网络
class Nn_Conv_Maxpool(nn.Module):
def __init__(self):
super().__init__()
self.maxpool1 = MaxPool2d(kernel_size=3, ceil_mode=True)
def forward(self, input_img):
output = self.maxpool1(input_img)
return output
nn_conv_maxpool = Nn_Conv_Maxpool()
output = nn_conv_maxpool(input_img)
print(output)
import torch
import torchvision
from torch import nn
from torch.nn import MaxPool2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
dataset = torchvision.datasets.CIFAR10('./dataset', train=False, download=True,
transform=torchvision.transforms.ToTensor())
dataloader = DataLoader(dataset, batch_size=64)
# 简单的搭建卷积神经网络
class Nn_Conv_Maxpool(nn.Module):
def __init__(self):
super().__init__()
self.maxpool1 = MaxPool2d(kernel_size=3, ceil_mode=True)
def forward(self, input_img):
output = self.maxpool1(input_img)
return output
nn_conv_maxpool = Nn_Conv_Maxpool()
writer = SummaryWriter('logs_maxpool')
step = 0
for data in dataloader:
imgs, targets = data
writer.add_images('input', imgs, step)
output = nn_conv_maxpool(imgs)
writer.add_images('output', output, step)
step += 1
writer.close()
神经网络-非线性激活
- ReLU
import torch
from torch import nn
from torch.nn import ReLU
input = torch.tensor([[1, -0.5],
[-1, 3]])
input = torch.reshape(input, (-1, 1, 2, 2))
print(input.shape)
class Nn_Network_Relu(nn.Module):
def __init__(self):
super().__init__()
self.relu1 = ReLU()
def forward(self, input):
output = self.relu1(input)
return output
nn_relu = Nn_Network_Relu()
output = nn_relu(input)
print(outputz)
- 使用图片进行演示
import torch
import torchvision
from torch import nn
from torch.nn import ReLU
from torch.nn import Sigmoid
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
input = torch.tensor([[1, -0.5],
[-1, 3]])
input = torch.reshape(input, (-1, 1, 2, 2))
print(input.shape)
dataset = torchvision.datasets.CIFAR10('./dataset', train=False, download=True,
transform=torchvision.transforms.ToTensor())
dataloader = DataLoader(dataset, batch_size=64)
class Nn_Network_Relu(nn.Module):
def __init__(self):
super().__init__()
self.relu1 = ReLU()
self.sigmoid1 = Sigmoid()
def forward(self, input):
output = self.sigmoid1(input)
return output
nn_relu = Nn_Network_Relu()
nn_sigmoid = Nn_Network_Relu()
writer = SummaryWriter('logs_sigmoid')
step = 0
for data in dataloader:
imgs, targets = data
writer.add_images("input_imgs", imgs, step)
output = nn_sigmoid(imgs)
writer.add_images("output", output, step)
step += 1
writer.close()
神经网络-线性层及其他层
- 线性层(linear layer)通常也被称为全连接层(fully connected layer)。在深度学习模型中,线性层和全连接层指的是同一种类型的神经网络层,它将输入数据与权重相乘并加上偏置,然后通过一个非线性激活函数输出结果。可以实现特征提取、降维等功能。
- 以VGG16网络模型为例,全连接层共有3层,分别是4096-4096-1000,这里的1000为ImageNet中数据集类别的数量。
import torch
import torchvision
from torch.utils.data import DataLoader
from torch import nn
from torch.nn import Linear
dataset = torchvision.datasets.CIFAR10('./dataset', train=False, transform=torchvision.transforms.ToTensor(),
download=True)
dataloader = DataLoader(dataset, batch_size=64)
class Nn_LinearModel(nn.Module):
def __init__(self):
super().__init__()
self.linear1 = Linear(196608, 10)
def forward(self, input):
output = self.linear1(input)
return output
nn_linearmodel = Nn_LinearModel()
for data in dataloader:
imgs, targets = data
print(imgs.shape)
output = torch.flatten(imgs)
print(output.shape)
output = nn_linearmodel(output)
print(output.shape)
-
torch.flatten: 将输入(Tensor)展平为一维张量
-
batch_size 一般不展开,以MNIST数据集的一个 batch 为例将其依次转化为例:
[64, 1, 28, 28] -> [64, 784] -> [64, 128]
神经网络-实践以及Sequential
import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear
class Nn_SeqModel(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = Conv2d(3, 32, 5, padding=2)
self.maxpool1 = MaxPool2d(2)
self.conv2 = Conv2d(32, 32, 5, padding=2)
self.maxpool2 = MaxPool2d(2)
self.conv3 = Conv2d(32, 64, 5, padding=2)
self.maxpool3 = MaxPool2d(2)
self.flatten = Flatten()
self.linear1 = Linear(1024, 64)
self.linear2 = Linear(64, 10)
def forward(self, x):
x = self.conv1(x)
x = self.maxpool1(x)
x = self.conv2(x)
x = self.maxpool2(x)
x = self.conv3(x)
x = self.maxpool2(x)
x = self.flatten(x)
x = self.linear1(x)
x = self.linear2(x)
return x
if __name__ == '__main__':
nn_seqmodel = Nn_SeqModel()
print(nn_seqmodel)
# 对网络模型进行检验
input = torch.ones((64, 3, 32, 32))
output = nn_seqmodel(input)
print(output.shape)
Nn_SeqModel(
(conv1): Conv2d(3, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(maxpool1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(conv2): Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(maxpool2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(conv3): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(maxpool3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(flatten): Flatten(start_dim=1, end_dim=-1)
(linear1): Linear(in_features=1024, out_features=64, bias=True)
(linear2): Linear(in_features=64, out_features=10, bias=True)
)
torch.Size([64, 10])
- Sequential 使代码更加简洁
import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
class Nn_SeqModel(nn.Module):
def __init__(self):
super().__init__()
# self.conv1 = Conv2d(3, 32, 5, padding=2)
# self.maxpool1 = MaxPool2d(2)
# self.conv2 = Conv2d(32, 32, 5, padding=2)
# self.maxpool2 = MaxPool2d(2)
# self.conv3 = Conv2d(32, 64, 5, padding=2)
# self.maxpool3 = MaxPool2d(2)
# self.flatten = Flatten()
# self.linear1 = Linear(1024, 64)
# self.linear2 = Linear(64, 10)
self.model1 = Sequential(
Conv2d(3, 32, 5, padding=2),
MaxPool2d(2),
Conv2d(32, 32, 5, padding=2),
MaxPool2d(2),
Conv2d(32, 64, 5, padding=2),
MaxPool2d(2),
Flatten(),
Linear(1024, 64),
Linear(64, 10)
)
def forward(self, x):
# x = self.conv1(x)
# x = self.maxpool1(x)
# x = self.conv2(x)
# x = self.maxpool2(x)
# x = self.conv3(x)
# x = self.maxpool2(x)
# x = self.flatten(x)
# x = self.linear1(x)
# x = self.linear2(x)
x = self.model1(x)
return x
if __name__ == '__main__':
nn_seqmodel = Nn_SeqModel()
print(nn_seqmodel)
# 对网络模型进行检验
input = torch.ones((64, 3, 32, 32))
output = nn_seqmodel(input)
print(output.shape)
Nn_SeqModel(
(model1): Sequential(
(0): Conv2d(3, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(2): Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(4): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(5): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(6): Flatten(start_dim=1, end_dim=-1)
(7): Linear(in_features=1024, out_features=64, bias=True)
(8): Linear(in_features=64, out_features=10, bias=True)
)
)
torch.Size([64, 10])
if __name__ == '__main__':
nn_seqmodel = Nn_SeqModel()
print(nn_seqmodel)
# 对网络模型进行检验
input = torch.ones((64, 3, 32, 32))
output = nn_seqmodel(input)
print(output.shape)
# 查看网络结构
writer = SummaryWriter('./logs_seq')
writer.add_graph(nn_seqmodel, input)
writer.close()
- 查看网络结构
损失函数与反向传播
- loos 损失函数
- 注意输入和输出
import torch
from torch.nn import L1Loss
inputs = torch.tensor([1, 2, 3], dtype=torch.float32)
targets = torch.tensor([1, 2, 5], dtype=torch.float32)
inputs = torch.reshape(inputs, (1, 1, 1, 3))
targets = torch.reshape(targets, (1, 1, 1, 3))
loss = L1Loss() # reduction='sum'
result = loss(inputs, targets)
print(result)
tensor(0.6667)
- 交叉熵loss
x = torch.tensor([0.1, 0.2, 0.3])
y = torch.tensor([1])
x = torch.reshape(x, (1, 3))
loss_cross = nn.CrossEntropyLoss()
result_cross = loss_cross(x, y)
print(f"The result_cross of CrossEntropyLoss: {result_cross}")
The result_cross of CrossEntropyLoss: 1.1019428968429565
- 测试
import torch
import torchvision
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import DataLoader
dataset = torchvision.datasets.CIFAR10("./dataset", train=False, transform=torchvision.transforms.ToTensor(),
download=True)
dataloader = DataLoader(dataset, batch_size=1)
class Nn_LossNetworkModel(nn.Module):
def __init__(self):
super().__init__()
self.model1 = Sequential(
Conv2d(3, 32, 5, padding=2),
MaxPool2d(2),
Conv2d(32, 32, 5, padding=2),
MaxPool2d(2),
Conv2d(32, 64, 5, padding=2),
MaxPool2d(2),
Flatten(),
Linear(1024, 64),
Linear(64, 10)
)
def forward(self, x):
x = self.model1(x)
return x
loss = nn.CrossEntropyLoss()
if __name__ == '__main__':
nn_lossmodel = Nn_LossNetworkModel()
for data in dataloader:
imgs, targets = data
outputs = nn_lossmodel(imgs)
result_loss = loss(outputs, targets)
print(f"the result_loss is : {result_loss}")
- 梯度下降 进行反向传播
- debug测试查看 grad
if __name__ == '__main__':
nn_lossmodel = Nn_LossNetworkModel()
for data in dataloader:
imgs, targets = data
outputs = nn_lossmodel(imgs)
result_loss = loss(outputs, targets)
# print(f"the result_loss is : {result_loss}")
result_loss.backward()
print("ok")
优化器
import torch
import torchvision
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import DataLoader
# 加载数据集转换为tensor类型
dataset = torchvision.datasets.CIFAR10("./dataset", train=False, transform=torchvision.transforms.ToTensor(),
download=True)
# 使用DataLoader将数据集进行加载
dataloader = DataLoader(dataset, batch_size=1)
# 创建网络
class Nn_LossNetworkModel(nn.Module):
def __init__(self):
super().__init__()
self.model1 = Sequential(
Conv2d(3, 32, 5, padding=2),
MaxPool2d(2),
Conv2d(32, 32, 5, padding=2),
MaxPool2d(2),
Conv2d(32, 64, 5, padding=2),
MaxPool2d(2),
Flatten(),
Linear(1024, 64),
Linear(64, 10)
)
def forward(self, x):
x = self.model1(x)
return x
if __name__ == '__main__':
loss = nn.CrossEntropyLoss()
nn_lossmodel = Nn_LossNetworkModel()
optim = torch.optim.SGD(nn_lossmodel.parameters(), lr=0.01)
for data in dataloader:
imgs, targets = data
outputs = nn_lossmodel(imgs)
result_loss = loss(outputs, targets)
optim.zero_grad()
result_loss.backward()
optim.step()
if __name__ == '__main__':
loss = nn.CrossEntropyLoss()
nn_lossmodel = Nn_LossNetworkModel()
optim = torch.optim.SGD(nn_lossmodel.parameters(), lr=0.01)
for epoch in range(20):
running_loss = 0.0
for data in dataloader:
imgs, targets = data
outputs = nn_lossmodel(imgs)
result_loss = loss(outputs, targets)
optim.zero_grad()
result_loss.backward()
optim.step()
running_loss = running_loss + result_loss
print("running_loss: ", running_loss)
Files already downloaded and verified
running_loss: tensor(18788.4355, grad_fn=)
running_loss: tensor(16221.9961, grad_fn=) ........
现有网络模型的使用以及修改
import torchvision
import torch
from torch import nn
# train_data = torchvision.datasets.ImageNet("./data_image_net", split="train",
# transform=torchvision.transforms.ToTensor(), download=True)
vgg16_false = torchvision.models.vgg16(pretrained=False)
vgg16_true = torchvision.models.vgg16(pretrained=True)
print('ok')
print(vgg16_true)
train_data = torchvision.datasets.CIFAR10('./dataset', train=True, transform=torchvision.transforms.ToTensor(),
download=True)
# vgg16_true.add_module('add_linear', nn.Linear(1000, 10))
vgg16_true.classifier.add_module('add_linear', nn.Linear(1000, 10))
print(vgg16_true)
print(vgg16_false)
vgg16_false.classifier[6] = nn.Linear(4096, 10)
print(vgg16_false)
网络模型的保存与读取
- save
import torch
import torchvision
from torch import nn
vgg16 = torchvision.models.vgg16(pretrained=False)
# 保存方式1: 模型结构+模型参数
torch.save(vgg16, "vgg16_method1.pth")
# 保存方式2: 模型参数(官方推荐)
torch.save(vgg16.state_dict(), "vgg16_method2.pth")
# 陷阱
class Nn_Model(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(3, 64, 3)
def forward(self, x):
x = self.conv1(x)
return x
nn_model = Nn_Model()
torch.save(nn_model, "nnModel_method1.pth")
- load
import torch
import torchvision
from torch import nn
from p19_model_save import *
# 加载方式1 ---> 对应保存方式1 ,加载模型
model = torch.load("vgg16_method1.pth")
# print(model)
# 加载方式2
model2 = torch.load("vgg16_method2.pth")
print(model2)
# 方式2 的回复网络模型结构
vgg16 = torchvision.models.vgg16(pretrained=False)
vgg16.load_state_dict(torch.load("vgg16_method2.pth"))
print(vgg16)
# 陷阱1
# class Nn_Model(nn.Module):
# def __init__(self):
# super().__init__()
# self.conv1 = nn.Conv2d(3, 64, 3)
#
# def forward(self, x):
# x = self.conv1(x)
# return x
model1 = torch.load("nnModel_method1.pth")
print(model1)
完成的模型训练套路(一)
- 建包 train.py 和 model.py
- model.py
import torch
from torch import nn
# 搭建神经网络
class Nn_Neural_NetWork(nn.Module):
def __init__(self):
super().__init__()
self.model = nn.Sequential(
nn.Conv2d(3, 32, 5, 1, 2),
nn.MaxPool2d(2),
nn.Conv2d(32, 32, 5, 1, 2),
nn.MaxPool2d(2),
nn.Conv2d(32, 64, 5, 1, 2),
nn.MaxPool2d(2),
nn.Flatten(),
nn.Linear(64 * 4 * 4, 64),
nn.Linear(64, 10)
)
def forward(self, x):
x = self.model(x)
return x
if __name__ == '__main__':
# 测试一下模型准确性
nn_model = Nn_Neural_NetWork()
input = torch.ones((64, 3, 32, 32))
output = nn_model(input)
print(output.shape)
- train.py
import torch
import torchvision
from torch import nn
from torch.utils.data import DataLoader
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from model import *
# 准备数据集
train_data = torchvision.datasets.CIFAR10(root='./data', train=True, transform=torchvision.transforms.ToTensor(),
download=True)
test_data = torchvision.datasets.CIFAR10(root='./data', train=False, transform=torchvision.transforms.ToTensor(),
download=True)
train_data_size = len(train_data)
test_data_size = len(test_data)
print("训练数据集的长度为:{}".format(train_data_size))
print("测试数据集的长度为:{}".format(test_data_size))
# 利用DataLoader 来加载数据集
train_loader = DataLoader(train_data, batch_size=64)
test_loader = DataLoader(test_data, batch_size=64)
# 创建网络模型
nn_model = Nn_Neural_NetWork()
# 损失函数
loss_fn = nn.CrossEntropyLoss()
# 优化器
# 1e-2 = 1 x (10)^(-2) = 1/100 = 0.01
learning_rate = 0.01
optimizer = torch.optim.SGD(nn_model.parameters(), lr=learning_rate)
# 设置训练网络的一些参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0
# 训练的轮数
epoch = 10
for i in range(epoch):
print("--------第{}轮训练开始-------".format(i + 1))
# 训练步骤开始
for data in train_loader:
imgs, targets = data
output = nn_model(imgs)
loss = loss_fn(output, targets)
# 优化器优化模型
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_train_step += 1
print("训练次数: {}, Loss: {}".format(total_train_step, loss.item()))
完成的模型训练套路(二)
- train.py
- 增加了tenorboard
- 增加了精确度Accuracy
import torch
import torchvision
from torch import nn
from torch.utils.data import DataLoader
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.tensorboard import SummaryWriter
from p20_model import *
# 准备数据集
train_data = torchvision.datasets.CIFAR10(root='./data', train=True, transform=torchvision.transforms.ToTensor(),
download=True)
test_data = torchvision.datasets.CIFAR10(root='./data', train=False, transform=torchvision.transforms.ToTensor(),
download=True)
train_data_size = len(train_data)
test_data_size = len(test_data)
print("训练数据集的长度为:{}".format(train_data_size))
print("测试数据集的长度为:{}".format(test_data_size))
# 利用DataLoader 来加载数据集
train_loader = DataLoader(train_data, batch_size=64)
test_loader = DataLoader(test_data, batch_size=64)
# 创建网络模型
nn_model = Nn_Neural_NetWork()
# 损失函数
loss_fn = nn.CrossEntropyLoss()
# 优化器
# 1e-2 = 1 x (10)^(-2) = 1/100 = 0.01
learning_rate = 0.01
optimizer = torch.optim.SGD(nn_model.parameters(), lr=learning_rate)
# 设置训练网络的一些参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0
# 训练的轮数
epoch = 10
# (可加可不加) 添加tensorboard
writer = SummaryWriter('./logs_train')
for i in range(epoch):
print("--------第{}轮训练开始-------".format(i + 1))
# 训练步骤开始
for data in train_loader:
imgs, targets = data
output = nn_model(imgs)
loss = loss_fn(output, targets)
# 优化器优化模型
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_train_step += 1
if total_train_step % 100 == 0:
print("训练次数: {}, Loss: {}".format(total_train_step, loss.item()))
writer.add_scalar("train_loss", loss.item(), total_train_step)
# 测试步骤开始
total_test_loss = 0
# 精确度
total_accuracy = 0
with torch.no_grad():
for data in test_loader:
imgs, targets = data
outputs = nn_model(imgs)
loss = loss_fn(outputs, targets)
total_test_loss += loss
accuracy = (outputs.argmax(1) == targets).sum()
total_accuracy += accuracy
print("整体测试集上的Loss: {}".format(total_test_loss))
print("整体测试集上的正确率Accuracy: {}".format(total_accuracy / test_data_size))
writer.add_scalar("test_loss", total_test_loss, total_test_step)
writer.add_scalar("test_accuracy", total_accuracy / test_data_size, total_test_step)
total_test_step += 1
# 保存模型结果
torch.save(nn_model, "model_{}.pth".format(i))
print("模型保存")
writer.close()