【Visual Leak Detector】QT 中 VLD 输出解析(三)
说明
使用 VLD 内存泄漏检测工具辅助开发时整理的学习笔记。 同系列文章目录可见 《内存泄漏检测工具》目录
1. 使用方式
在 QT 中使用 VLD 的方法可以查看另外几篇博客:
本次测试使用的环境为:QT 5.9.2,MSVC 2015 32bit,Debug 模式,VLD 版本为 2.5.1,VLD 配置文件不做任何更改使用默认配置,测试工程所在路径为:E:\Cworkspace\Qt 5.9\QtDemo\testVLD
。
2. 有三处内存泄漏时的输出报告
写一个有三处内存泄漏的程序,如下:
#include <QCoreApplication>
#include "vld.h"
void testFun1()
{
int *ptr = new int(0x55345678);
printf("ptr1 = %08x, *ptr1 = %08x.\n", ptr, *ptr);
}
void testFun2()
{
short *ptr = new short(0x4529);
printf("ptr2 = %08x, *ptr2 = %04x.\n", ptr, *ptr);
}
void testFun3()
{
char *ptr = new char[3];
printf("ptr3 = %08x.\n", ptr, *ptr);
}
int main(int argc, char *argv[])
{
QCoreApplication a(argc, argv);
testFun1();
testFun2();
testFun3();
return a.exec();
}
程序运行时,在标准输出窗会输出以下结果:
ptr1 = 00b674b8, *ptr1 = 55345678.
ptr2 = 00b670f8, *ptr2 = 4529.
ptr3 = 00b674e8.
程序运行结束后,检测到了内存泄漏,VLD 会输出以下报告(本例中出现三处内存泄漏),第 1~3 行显示 VLD 运行状态,第 4~19 行显示 testFun2()
函数泄漏内存的详细信息,第 22~37 行显示 testFun1()
函数泄漏内存的详细信息,第 40~55 行显示 testFun3()
函数泄漏内存的详细信息,第 58~60 行总结此次泄漏情况,第 61 行显示 VLD 退出状态。
Visual Leak Detector read settings from: D:\Program Files (x86)\Visual Leak Detector\vld.ini
Visual Leak Detector Version 2.5.1 installed.
WARNING: Visual Leak Detector detected memory leaks!
---------- Block 2 at 0x00B670F8: 2 bytes ----------
Leak Hash: 0xB9FC7D06, Count: 1, Total 2 bytes
Call Stack (TID 14904):
ucrtbased.dll!malloc()
f:\dd\vctools\crt\vcstartup\src\heap\new_scalar.cpp (19): testVLD.exe!operator new() + 0x9 bytes
e:\cworkspace\qt 5.9\qtdemo\testvld\main.cpp (12): testVLD.exe!testFun2() + 0x7 bytes
e:\cworkspace\qt 5.9\qtdemo\testvld\main.cpp (28): testVLD.exe!main()
f:\dd\vctools\crt\vcstartup\src\startup\exe_common.inl (74): testVLD.exe!invoke_main() + 0x1B bytes
f:\dd\vctools\crt\vcstartup\src\startup\exe_common.inl (264): testVLD.exe!__scrt_common_main_seh() + 0x5 bytes
f:\dd\vctools\crt\vcstartup\src\startup\exe_common.inl (309): testVLD.exe!__scrt_common_main()
f:\dd\vctools\crt\vcstartup\src\startup\exe_main.cpp (17): testVLD.exe!mainCRTStartup()
KERNEL32.DLL!BaseThreadInitThunk() + 0x19 bytes
ntdll.dll!RtlGetAppContainerNamedObjectPath() + 0x11E bytes
ntdll.dll!RtlGetAppContainerNamedObjectPath() + 0xEE bytes
Data:
29 45 )E...... ........
---------- Block 1 at 0x00B674B8: 4 bytes ----------
Leak Hash: 0xE622CBED, Count: 1, Total 4 bytes
Call Stack (TID 14904):
ucrtbased.dll!malloc()
f:\dd\vctools\crt\vcstartup\src\heap\new_scalar.cpp (19): testVLD.exe!operator new() + 0x9 bytes
e:\cworkspace\qt 5.9\qtdemo\testvld\main.cpp (6): testVLD.exe!testFun1() + 0x7 bytes
e:\cworkspace\qt 5.9\qtdemo\testvld\main.cpp (27): testVLD.exe!main()
f:\dd\vctools\crt\vcstartup\src\startup\exe_common.inl (74): testVLD.exe!invoke_main() + 0x1B bytes
f:\dd\vctools\crt\vcstartup\src\startup\exe_common.inl (264): testVLD.exe!__scrt_common_main_seh() + 0x5 bytes
f:\dd\vctools\crt\vcstartup\src\startup\exe_common.inl (309): testVLD.exe!__scrt_common_main()
f:\dd\vctools\crt\vcstartup\src\startup\exe_main.cpp (17): testVLD.exe!mainCRTStartup()
KERNEL32.DLL!BaseThreadInitThunk() + 0x19 bytes
ntdll.dll!RtlGetAppContainerNamedObjectPath() + 0x11E bytes
ntdll.dll!RtlGetAppContainerNamedObjectPath() + 0xEE bytes
Data:
78 56 34 55 xV4U.... ........
---------- Block 3 at 0x00B674E8: 3 bytes ----------
Leak Hash: 0x1ED7DC7D, Count: 1, Total 3 bytes
Call Stack (TID 14904):
ucrtbased.dll!malloc()
f:\dd\vctools\crt\vcstartup\src\heap\new_array.cpp (15): testVLD.exe!operator new[]() + 0x9 bytes
e:\cworkspace\qt 5.9\qtdemo\testvld\main.cpp (18): testVLD.exe!testFun3() + 0x7 bytes
e:\cworkspace\qt 5.9\qtdemo\testvld\main.cpp (30): testVLD.exe!main()
f:\dd\vctools\crt\vcstartup\src\startup\exe_common.inl (74): testVLD.exe!invoke_main() + 0x1B bytes
f:\dd\vctools\crt\vcstartup\src\startup\exe_common.inl (264): testVLD.exe!__scrt_common_main_seh() + 0x5 bytes
f:\dd\vctools\crt\vcstartup\src\startup\exe_common.inl (309): testVLD.exe!__scrt_common_main()
f:\dd\vctools\crt\vcstartup\src\startup\exe_main.cpp (17): testVLD.exe!mainCRTStartup()
KERNEL32.DLL!BaseThreadInitThunk() + 0x19 bytes
ntdll.dll!RtlGetAppContainerNamedObjectPath() + 0x11E bytes
ntdll.dll!RtlGetAppContainerNamedObjectPath() + 0xEE bytes
Data:
CD CD CD ........ ........
Visual Leak Detector detected 3 memory leaks (117 bytes).
Largest number used: 117 bytes.
Total allocations: 117 bytes.
Visual Leak Detector is now exiting.
观察以上输出报告,可以总结出以下规律:
Block
后面的序号和函数调用顺序有关,先调用的序号小,在主函数中testFun1()
、testFun2()
、testFun3()
是依次调用的,分别对应于Block 1
、Block 2
、Block 3
。- 报告输出时泄漏信息的显示顺序和地址大小有关,地址小的先显示,
Block 1
、Block 2
、Block 3
的泄漏首地址分别为0x00B674B8
、0x00B670F8
、0x00B674E8
,内存地址从小到大排序为Block 2
、Block 1
、Block 3
,显示顺序正是如此。
每个 Block
输出的详细解析可以查看另外一篇博客 【Visual Leak Detector】QT 中 VLD 输出解析(二)。第 58~60 行中的 117 bytes
包含有: Block 1
中申请 int
的 4 bytes
及对应的 36 bytes
内存管理头、 Block 2
中申请 short
的 2 bytes
及对应的 36 bytes
内存管理头、 Block 3
中申请 char[3]
的 3 bytes
及对应的 36 bytes
内存管理头,共计 \(4 + 36 + 2 + 36 + 3 + 36 = 117 bytes\)。
3. 有两处内存泄漏时的输出报告
将 testFun2()
函数中申请的内存正常释放,测试代码如下:
#include <QCoreApplication>
#include "vld.h"
void testFun1()
{
int *ptr = new int(0x55345678);
printf("ptr1 = %08x, *ptr1 = %08x.\n", ptr, *ptr);
}
void testFun2()
{
short *ptr = new short(0x4529);
printf("ptr2 = %08x, *ptr2 = %04x.\n", ptr, *ptr);
delete ptr;
}
void testFun3()
{
char *ptr = new char[3];
printf("ptr3 = %08x.\n", ptr, *ptr);
}
int main(int argc, char *argv[])
{
QCoreApplication a(argc, argv);
testFun1();
testFun2();
testFun3();
return a.exec();
}
程序运行时,在标准输出窗会输出以下结果:
ptr1 = 006c5c68, *ptr1 = 55345678.
ptr2 = 006c5cc8, *ptr2 = 4529.
ptr3 = 006c5db8.
程序运行结束后,检测到了内存泄漏,VLD 会输出以下报告(本例中出现两处内存泄漏),第 1~3 行显示 VLD 运行状态,第 4~19 行显示 testFun1()
函数泄漏内存的详细信息,第 22~37 行显示 testFun3()
函数泄漏内存的详细信息,第 40~42 行总结此次泄漏情况,第 43 行显示 VLD 退出状态。
Visual Leak Detector read settings from: D:\Program Files (x86)\Visual Leak Detector\vld.ini
Visual Leak Detector Version 2.5.1 installed.
WARNING: Visual Leak Detector detected memory leaks!
---------- Block 1 at 0x006C5C68: 4 bytes ----------
Leak Hash: 0x1E4EE072, Count: 1, Total 4 bytes
Call Stack (TID 11992):
ucrtbased.dll!malloc()
f:\dd\vctools\crt\vcstartup\src\heap\new_scalar.cpp (19): testVLD.exe!operator new() + 0x9 bytes
e:\cworkspace\qt 5.9\qtdemo\testvld\main.cpp (6): testVLD.exe!testFun1() + 0x7 bytes
e:\cworkspace\qt 5.9\qtdemo\testvld\main.cpp (28): testVLD.exe!main()
f:\dd\vctools\crt\vcstartup\src\startup\exe_common.inl (74): testVLD.exe!invoke_main() + 0x1B bytes
f:\dd\vctools\crt\vcstartup\src\startup\exe_common.inl (264): testVLD.exe!__scrt_common_main_seh() + 0x5 bytes
f:\dd\vctools\crt\vcstartup\src\startup\exe_common.inl (309): testVLD.exe!__scrt_common_main()
f:\dd\vctools\crt\vcstartup\src\startup\exe_main.cpp (17): testVLD.exe!mainCRTStartup()
KERNEL32.DLL!BaseThreadInitThunk() + 0x19 bytes
ntdll.dll!RtlGetAppContainerNamedObjectPath() + 0x11E bytes
ntdll.dll!RtlGetAppContainerNamedObjectPath() + 0xEE bytes
Data:
78 56 34 55 xV4U.... ........
---------- Block 3 at 0x006C5DB8: 3 bytes ----------
Leak Hash: 0xE91F4A96, Count: 1, Total 3 bytes
Call Stack (TID 11992):
ucrtbased.dll!malloc()
f:\dd\vctools\crt\vcstartup\src\heap\new_array.cpp (15): testVLD.exe!operator new[]() + 0x9 bytes
e:\cworkspace\qt 5.9\qtdemo\testvld\main.cpp (19): testVLD.exe!testFun3() + 0x7 bytes
e:\cworkspace\qt 5.9\qtdemo\testvld\main.cpp (31): testVLD.exe!main()
f:\dd\vctools\crt\vcstartup\src\startup\exe_common.inl (74): testVLD.exe!invoke_main() + 0x1B bytes
f:\dd\vctools\crt\vcstartup\src\startup\exe_common.inl (264): testVLD.exe!__scrt_common_main_seh() + 0x5 bytes
f:\dd\vctools\crt\vcstartup\src\startup\exe_common.inl (309): testVLD.exe!__scrt_common_main()
f:\dd\vctools\crt\vcstartup\src\startup\exe_main.cpp (17): testVLD.exe!mainCRTStartup()
KERNEL32.DLL!BaseThreadInitThunk() + 0x19 bytes
ntdll.dll!RtlGetAppContainerNamedObjectPath() + 0x11E bytes
ntdll.dll!RtlGetAppContainerNamedObjectPath() + 0xEE bytes
Data:
CD CD CD ........ ........
Visual Leak Detector detected 2 memory leaks (79 bytes).
Largest number used: 79 bytes.
Total allocations: 117 bytes.
Visual Leak Detector is now exiting.
观察以上输出报告,可知 Block
后面的序号不仅仅针对导致内存泄漏的函数,这个例子中的 Block 2
应该属于 testFun2()
,但由于 testFun2()
正常释放了内存,因此在输出报告中没有找到 Block 2
,只能找到 Block 1
和 Block 3
,这个例子说明了输出报告中 Block
序号不一定是连续的,可能缺失了一些序号,属正常现象。第 40~41 行中的 79 bytes
包含有: Block 1
中申请 int
的 4 bytes
及对应的 36 bytes
内存管理头、 Block 3
中申请 char[3]
的 3 bytes
及对应的 36 bytes
内存管理头,共计 \(4 + 36 + 3 + 36 = 79 bytes\)。第 42 行中的 117 bytes
表示运行过程中一共分配的内存大小,计算方式与上一节一样。